miércoles, 21 de enero de 2015

INTRODUCCIÓN A LA TERMODINÁMICA DE GASES







En 1662 El ingles Robert Boyle observo durante sus experimentos con una cámara de vacío que la presión de los gases es inversamente proporcional a su volumen. En 1802, los franceses J. Charles y J. Gay-Lussac determinaron de modo experimental que a bajas presiones el volumen de un gas es proporcional a su temperatura. Es decir:



P=R(T/v)

La termodinámica de gases estudia el comportamiento de los gases cuando estos son sometidos a cambios de temperatura, presión, volumen y energía.

Para estudiar el comportamiento de los gases es necesario empezar analizando el estado ideal de los mismos. 





GASES IDEALES



Ugas ideal es un gas teórico compuesto de un conjunto de moléculas que ocupa un volumen determinado donde la interacción entre si es elástica mediante un movimiento aleatorio. Un gas ideal obedece la relación (Pv=RT), donde P es la presión absoluta, T es la temperatura absoluta, v es el volumen constante y R la constante de proporcionalidad.


La constante R es diferente para cada gas y se determina a partir de

R= RU/M

donde RU es la contante universal de los gases y M es la masa molar del gas. La masa molar M se define como la masa de un mol. La masa de un sistema es igual al producto de su masa molar M y el numero de moles N:

m = MN


GASES REALES


El modelo de gas ideal tiende a fallar a temperaturas menores o a presiones elevadas.
Los gases reales se desvían de manera importante del comportamiento de gas ideal en estados cercanos a la región de saturación y el punto crítico. Esta desviación a temperatura y presión especificadas se toma en cuenta con exactitud mediante la introducción de un factor de corrección llamado factor de compresibilidad Z, definido como:

Pv=ZRT

Para gases ideales Z=1, mientras que para los reales puede ser mayor o menor que la unidad. Cuanto más lejos se encuentra Z de la  unidad, mayor es la desviación que el gas presenta respecto al comportamiento de gas ideal.

Los gases se comportan de manera diferente a determinadas temperaturas y presión, pero se comporta de manera muy parecida a temperaturas y presiones normalizadas respecto a sus temperaturas y presiones críticas. La normalización se efectúa como:

TR=T/TCR  y  PR=P/PCR

En la que PR es la presión reducida y Tla temperatura reducida. Con estos valores se obtiene el factor de compresibilidad, usando la carta de compresibilidad generalizada.


CARTA DE COMPRESIBILIDAD (Z vs PR)



EJEMPLO 1:



ENERGÍA ASOCIADA A LOS GASES


Para un gas ideal la energía interna es sólo una función de la temperatura. Es decir,


u = u(T)

Con la definición de entalpía y la ecuación de estado de un gas ideal, se tiene

h = u + Pv

(Pv = RT)

h(T)= u (T) + RT


Puesto que para un gas ideal u y h dependen únicamente de la temperatura, los calores específicos cv y cp dependen también, a lo sumo, sólo de la temperatura. Por lo tanto, a una temperatura dada, u, h, cy cp de un gas ideal tienen valores fijos sin importar el volumen específico o la presión. Entonces, los cambios en la energía interna y la entalpía de un gas ideal se pueden expresar como



u2-u1 = cv,prom (T2-T1)
y
h2-h1 = cp,prom (T2-T1)


Los calores específicos promedio se evalúan a la temperatura promedio (T2-T1)/2.

Relación de calores específicos:



Una relación especial entre cy cp para gases ideales se obtiene al derivar la relación h = u + RT, los cual produce (dh = du + RT). Se reemplaza dh por cp dT, y du por cv dT, se divide la expresión resultante entre dT, se obtiene
cp = cv + R


y la relación de calores específicos k, se define como

k = cp/cv

EJEMPLO 2:


     MEZCLA DE GASES NO REACTIVA


Una mezcla de gas no reactiva puede tratarse como una sustancia pura porque casi siempre es una mezcla homogénea de diferentes gases. Por supuesto, las propiedades de una mezcla de gases dependen de las propiedades de los gases individuales, asi como de la cantidad de gas en cada mezcla.
Para determinar las propiedades de una mezcla es necesario conocer la composición de la mezcla, asi como las propiedades de los componentes individuales. Hay dos maneras de describir la composición de una mezcla: ya sea mediante la especificación del número de moles de cada componente, método que recibe el nombre de análisis molar, o mediante la especificación de la masa de cada componente, denominado gravimétrico.

Análisis molar:


Los moles de la mezcla Nm es la suma de las moles de los componente individuales.

Nm = N1 + N2 +...+Nn

La relación entre el número de moles de un componente y el número de moles de la mezcla se denomina fracción molar.

yi = Ni/Nm
y
y1+y2+...+yn = 1

Análisis gavimétrico:

La masa de la mezcla mm es la suma de las masas de los componente individuales.

mm = m1 + m2 +...+mn

La relación entre la masa de un componente y la masa de la mezcla se denomina fracción masa.


fmi = mi/mm
y
fm1+fm2+...+fmn = 1

La masa molar aparente (o promedio) y la constante del gas de una mezcla se expresa como

Mm = (mm/Nm ) =  y1M1+y2M2+...+ynMn

y
Rm = RU/Mm

MEZCLA DE GASES IDEALES


Cuando se mezclan dos o más gases ideales, el comportamiento de una molécula no es afectado por la presencia de otras moléculas similares o diferentes y, en consecuencia, una mezcla no reactiva de gases ideales se comporta como un gas ideal.


La predicción del comportamiento P-v-T de mezcla de gas suele basarse en dos modelos: La ley de Dalton de presiones aditivas y la ley de Amagat de volúmenes aditivos.



Ley de Dalton de presiones aditivas: 

La presión de una mezcla de gases es igual a la suma de las presiones que cada gas ejercería si existiera sólo a la temperatura y volumen de la mezcla.



Pm = P1 + P2 +...+Pn


Ley de Amagat de volúmenes aditivos:


El volumen de una mezcla de gases es igual a la suma de los volúmenes que cada gas ocuparía si existiera sólo a la temperatura y presión de la mezcla.

Vm = V1 + V2 +...+Vn




La ley de Dalton es más apropiada para mezcla de gases a baja presión. La ley de Amagat es más adecuada a presiones altas.

Para gases ideales Pi y Vi pueden relacionarse con yi mediante la relación de gas ideal, tanto para componentes como para mezcla de gases:


(Pi/Pm) = (Vi/Vm) = (Ni/Nm) = yi

La relación de la reducción de volumen respecto del volumen original (fracción volumen) representa la fracción molar de ese gas particular.

MEZCLA DE GASES REALES


El factor de compresibilidad de la mezcla Zm puede expresarse en términos de los factores de compresibilidad de los gases individuales Zi, al aplicar la ecuación (PV=ZNRuT) en ambos lados de la expresión de la ley de Dalton o de Amagat y simplificando, se obtiene,


Zm = y1Z1+y2Z2+...+ynZn


donde Zi se determina ya sea a Tm y Vm (Ley de Dalton) o a Tm y Pm (Ley de Amagat) para cada gas individual. En general, el enfoque del factor de compresibilidad proporciona resultados más precisos cuando las Zi se evalúan con la ley de Amagat en lugar de la ley de Dalton.



Otro enfoque para predecir el comportamiento P-v-T de una mezcla de gases es tratarla como una sustancia pseudopura. Un método de este tipo, propuesto por W. B. Kay en 1936 y llamado la regla de Kay, implica el uso de una presión pseudocrítica P'cr,m y una temperatura pseudocrítica T'cr,m para la mezcla, definidas en términos de las presiones y temperaturas de los componentes de la mezcla como



P'cr,m = y1Pcr1+y2Pcr2+...+ynPcrn
y
T'cr,m = y1Tcr1+y2Tcr2+...+ynTcrn



El factor de compresibilidad de la mezcla Zm se determina luego con facilidad con estas propiedades pseudocríticas.


EJEMPLO 3:


ENERGÍA ASOCIADA A LA MEZCLA DE GASES


La evaluación de Δu o de Δh de los componentes de una mezcla de gases ideales durante un proceso es relativamente fácil porque sólo requiere conocer las temperaturas iniciales y finales.


u2-u1 = cv,prom (Tm-T1)
y
h2-h1 = cp,prom (Tm-T1)


Donde Tm es la temperatura de la mezcla.


Para propiedades extensivas de una mezcla de gases ideales, únicamente se suman las contribuciones de cada componente mezclado. Así la energía interna y la entalpía de una mezcla se expresa respectivamente como

Um = ∑Ui = ∑mi ui 

Hm = ∑Hi = ∑mi hi 

y para las propiedades intensivas de una mezcla de gases, la energía interna y entalpía por unidad de masa, en una mezcla de gases se expresa respectivamente como 

um∑fmi u

hm∑fmi h


de manera similar, los calores específicos de una mezcla de gases se expresan como

cvm = ∑fmi cv

cpm = ∑fmi cp
EJEMPLO 4:

1 comentario: